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EFFECT OF THE CONTACT-LINE DYNAMICS

ON THE NATURAL OSCILLATIONS OF A CYLINDRICAL DROPLET

UDC 532.5.032A. A. Alabuzhev1 and D. V. Lyubimov2

The natural oscillations of a cylindrical droplet of an inviscid liquid surrounded by a different liquid
and bounded in the axial direction by solid planes are studied. The motion of the contact line is
described using an effective boundary condition. The dependence of the frequency and damping ratio
on the capillary parameter is found. It is shown that the fundamental frequency of the translation
mode vanishes beginning from a certain value of the capillary parameter. Depending on the ratio
of the radial and axial dimensions of the droplet, the fundamental frequency of the axisymmetric
mode and modes higher than the translation mode can vanish in a certain range of the capillary
parameter. This dependence of the natural oscillation frequencies on the problem parameters allows
one to determine the capillary parameter.

Key words: cylindrical droplet, contact line, natural oscillations.

Introduction. The mechanical equilibrium of a liquid column (liquid zone) and a jet with respect to small
free capillary oscillations was studied theoretically and experimentally by Plateau [1, 2] and Rayleigh [3, 4]. In the
papers cited, the limiting ratio of the height of the liquid column h and its radius R was found to be h = 2πR. For
large values of h, the column becomes unstable and collapses (Rayleigh instability). Instability of a cylindrical jet
surrounded by a different liquid was studied in [4]. The natural frequencies of a free liquid column are given in [5].

Interest in such configurations is motivated by their applications in various technological processes. For
example, a liquid zone is used in growing semi-conductor crystals. The main emphasis has been placed on the flow
in the liquid zone in the presence of heating, vertical oscillations, and a magnetic field. We note that most studies
have been concerned with a cylindrical liquid column (liquid zone) surrounded by a gas, whose effect is ignored.
Thus, the side surface of the column is considered free.

Sanz [6] studied the axisymmetric natural oscillations of a cylindrical liquid bridge with a fixed contact
line in a vessel of finite dimensions under no gravity conditions. A comparison showed that the frequency values
obtained were in good agreement with the experimental data also given in [6]. Similar studies have been performed
for nonlinear natural oscillation modes [7].

Problems with the contact-line dynamics taken into account have been examined in various formulations.
Most efforts have been directed toward investigating high-frequency oscillations of small amplitude (free or forced).
In this case, as in many other problems of liquid oscillations, viscous and nonlinear terms in the Navier–Stokes
equations can be ignored. Then, the conditions imposed on the motion of the contact line of three media is of the
greatest interest.

The most widely used condition (by virtue of its simplicity) is the one employed in a study [8] of the damping
of standing waves between two vertical walls. This condition assumes a linear relationship between the velocity of
motion of the contact line and the contact angle (in the case of right equilibrium contact angle):
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Fig. 1. Geometry of the problem: A is the droplet; B is the surrounding liquid.

∂ζ∗
∂t

= Λk · ∇ζ∗. (1)

Here ζ∗ is the deviation of the surface from the equilibrium position, Λ is the phenomenological constant (the
so-called capillary parameter or wetting parameter), and k is the normal vector to the solid surface. We note that
conditions of fixed contact line and constant contact angle are particular cases of the boundary conditions Λ = 0
and Λ = ∞, respectively. It has been shown [8] that, by virtue of the boundary condition (1), the liquid oscillations
attenuate, except in the cases Λ = 0 and Λ = ∞. The same paper gives results of a qualitative comparison with
experimental data.

Formula (1) well describes the results of experiments [9] with a small change in the contact angle. In addition,
a qualitative comparison [8] of theoretical results with experimental data [9] has shown that surface polishing leads
to a severalfold increase in the wetting parameter, i.e., the parameter Λ also characterizes the degree of surface
finish of the support. Formula (1) probably results from linearization of a certain more complex boundary condition
(see, for example, [10, 11]).

In most papers dealing with the contact-line dynamics, the spread of the liquid (droplet) and interaction with
the support have been studied (see, for example, [11, 12]). Borkar and Tsamopoulos performed [13] a theoretical
analysis of the axisymmetric natural oscillations of a liquid zone with a free side surface in a gravity field. The
motion of the contact line was described using condition (1), and dissipation in a thin dynamic boundary layer on
solid surfaces was studied. Dissipation due to the motion of the contact line was shown to make a major contribution
to the damping. The nonaxisymmetric natural oscillations of a viscous liquid zone with a free side surface in a
gravity field with a fixed contact line were studied in [14].

Formulation of the Problem. We consider the natural oscillations of a liquid droplet of density ρ∗i
surrounded by a different liquid of density ρ∗e. Here and below, the quantities with the subscript i correspond to the
droplet, and the quantities with the subscript e to the surrounding liquid. The system is bounded by two parallel
solid planes (Fig. 1). The vessel is closed at infinity. In the absence of external forces, the droplet has the shape of
a cylinder of radius R. The contact angle between the side surface of the droplet and the solid planes in equilibrium
is equal to π/2. The distance between the bounding surfaces is equal to h.

The characteristic amplitude of oscillations of the droplet A∗ is small compared to the equilibrium radius R.
We assume that, on the one hand, the fundamental oscillation frequency ω∗ is large enough for the viscosity can be
ignored, and, on the other hand, the oscillation frequency is small enough, so that we can use the incompressibility
conditions δ =

√
ν/ω∗ � R and ω∗R � c (δ is the boundary-layer thickness, c is the sound velocity, and ν is the

kinematic viscosity). For example, for a water droplet of radius 10−2 m, the values of the frequency ω∗ meeting
the indicated requirements are in a wide range from 0.1 to 100 Hz. For a free water column surrounded by a liquid
with close parameters, the lowest natural oscillation frequency is ω∗ ≈ 10 Hz.

It is convenient to use cylindrical coordinates (r∗, α, z∗), in which the droplet surface is described by the
relation r∗ = R + ζ∗(α, z∗, t∗), where ζ∗(α, z∗, t∗) is the deviation of the surface from the equilibrium position and
the angle α is reckoned from the x axis.

Ignoring viscous damping, we write the Bernoulli and continuity equations in dimensionless form

p = −ρ(ϕt + ε(∇ϕ)2/2), Δϕ = 0. (2)
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Here the liquid velocity potential is given by the relation v = ∇ϕ; p is the pressure; the subscript at the unknown
functions denotes differentiation with respect to the corresponding variables. At the interface between the liquids,
the continuity condition for the normal velocity, the kinematic condition, and the balance condition for the normal
stresses should be satisfied:

r = 1 + εζ: [n · ∇ϕ] = 0, Ft + ε∇ϕ · ∇F = 0, [p] = − div n. (3)

Here the square brackets denote the jump in the quantity at the interface between the external liquid and the
droplet; ζ is the deviation of the surface from the equilibrium position; F = r − 1 − εζ; and n = ∇F/|∇F | is the
normal vector to the side surface of the droplet.

The velocity of motion of the contact line is proportional to the deviation of the contact angle from the
equilibrium value [8]:

r = 1 + εζ, z = ±1/2: ζt = λk · ∇ζ (4)

(λ is the capillary parameter).
At the solid surfaces, it is necessary to impose the nonpenetration condition

z = ±1/2: k · ∇ϕ = 0. (5)

As the scaling quantities we use the following parameters:

t0 =
√

(ρ∗e − ρ∗i )R3/σ, v0 = A∗
√

σ/((ρ∗e + ρ∗i )R3), p0 = A∗α/R2

(σ is the surface tension coefficient). The boundary-value problem (2)–(5) contains five dimensionless parameters:
the small relative characteristic amplitude ε = A∗/R, the capillary parameter λ = Λ/

√
(ρ∗e + ρ∗i )R3h2/σ, the

geometrical parameter b = R/h, the density of the external liquid ρe = ρ∗e/(ρ∗e + ρ∗i ), and the density of the liquid
in the droplet ρi = ρ∗i /(ρ∗e + ρ∗i ). The last two parameters are linked by the relation ρi + ρe = 1.

Even Modes. By the evenness of the natural oscillation modes is meant the evenness of the functions
under a change of sign of the vertical coordinate z. We linearize the boundary-value problem (2)–(5) in the small
parameter ε:

Δϕ = 0, p = −ρϕt; (6)

r → ∞: ϕ → 0; (7)

r = 1: [ϕr] = 0, ζt = ϕr, [p] = ζ + ζαα + b2ζzz; (8)

z = ±1/2: ϕz = 0; (9)

r = 1, z = ±1/2: ζt = ∓λζz. (10)

In view of axial symmetry, the solution of the Laplace equation (6) is written as

ϕi =
∞∑

k=0

∞∑

m=1

amkRi
mk(r) cos (2πkz) cos (mα) exp (iΩt),

ϕe =
∞∑

k=0

∞∑

m=1

bmkRe
mk(r) cos (2πkz) cos (mα) exp (iΩt),

(11)

where k � 1, Re
mk(r) = Km(2πbkr) at k � 1, Im and Km are modified Bessel functions, and Ω is the natural

oscillation frequency. Using the kinematic condition and the balance condition for the normal stress (8), we seek
the function of the surface deviation ζ(α, z, t) in the form

ζ =
( ∞∑

m=0

∞∑

k=0

cmk cos (2πkz) cos (mα) + d1z
2 cos (α) + d2 cos

(z

b

)

+
∞∑

m=2

em cosh
(√

m2 − 1
b

z
)

cos (mα)
)

exp (iΩt), (12)
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where the last three terms are partial solutions which follow from the third boundary condition in (8). We note that
in [13] these terms were ignored. Substituting solutions (11) and (12) into (6)–(10), we obtain a spectral-amplitude
problem, whose eigenvalues are values of the natural oscillation frequency Ω. From the solution of this problem, it
follows that the eigenvalues are found from the equations

i

∞∑

k=1

4bΩ3

γ2
0k(ω2

0k − Ω2)
+ i2bΩ− iΩ cot

( 1
2b

)
+ λ

1
b

= 0, m = 0,

∞∑

k=1

Ω4

π2k2(ω2
1k − Ω2)

+
1
6

Ω2 − iλΩ − 2b2 = 0, m = 1, (13)

iΩ3
( 2b

γm0(ω2
m0 − Ω2)

+
∞∑

k=1

4bγm0

γ2
mk(ω2

mk − Ω2)

)
+ λ

γm0

b
+ iΩ coth

(γm0

2b

)
= 0, m � 2,

where

γ2
mk = m2 − 1 + 4π2b2k2,

ω2
mk = γ2

mk

Ri
mkr(1)
Fmk

, Fmk = ρiR
i
mk(1) − ρe

Ri
mkr(1)

Re
mkr(1)

Re
mk(1),

ωmk are the natural oscillation frequencies of the freely moving cylindrical droplet [5].
The complex algebraic equations (13) have complex solutions, which leads to oscillation damping due to

dissipation on the contact line.
Odd Modes. By analogy with the solution for the even modes, the solution of the Laplace equation (6) is

written as

ϕi =
∞∑

k=0

∞∑

m=0

amkRi
mk(r) sin [(2k + 1)πz] cos (mα) exp (iΩt),

ϕe =
∞∑

k=0

∞∑

m=0

bmkRe
mk(r) sin [(2k + 1)πz] cos (mα) exp (iΩt),

where Ri
mk(r) = Im((2k + 1)πbr), Re

mk(r) = Km((2k + 1)πbr), and Im and Km are modified Bessel functions.
Using the results (12) obtained above, we write the function of the surface deviation as

ζ =
[ ∞∑

m=0

∞∑

k=0

cmk sin [(2k + 1)πz] cos (mα) + d1z cos (α) + d2 sin
(z

b

)

+
∞∑

m=2

em sinh
(√

m2 − 1
b

z
)

cos (mα)
]
exp (iΩt).

Calculations similar to those for the even modes yield the following equations for the natural oscillation
frequencies of odd modes:

∞∑

k=0

i4bΩ3

δ2
0m(ω2

0k − Ω2)
+ iΩ tan

( 1
2b

)
+ λ

1
b

= 0, m = 0,

∞∑

k=0

4Ω2

(2k + 1)2π2(ω2
1k − Ω2)

+
1
2

+
λ

iΩ
= 0, m = 1, (14)

∞∑

k=0

4Ω2bδm0

δ2
mk(ω2

mk − Ω2)
+

λδm0

iΩb
+ tanh

(δm0

2b

)
= 0, m � 2.
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Fig. 2. Natural oscillations frequency (a) and damping ratio (b) versus capillary parameter for the
frequencies Ω11 and Ω01: curves 1 and 3 refer to the frequency Ω01 for b = 0.4 (1) and b = 0.6 (3);
curve 2 refer to the frequency Ω11 for ρi = 0.75 and b = 0.4.

Here

δ2
mk = m2 − 1 + (2k + 1)2π2b2,

ω2
mk = δ2

mk

Ri
mkr(1)
Fmk

, Fmk = ρiR
i
mk(1) − ρe

Ri
mkr(1)

Re
mkr(1)

Re
mk(1).

Results. Equations (13) and (14) were solved numerically using the two-dimensional secant method. Fig-
ure 2 shows the real part ΩRe (oscillation frequency) and imaginary part ΩIm (damping ratio) of the complex natural
frequency Ω for the oscillation modes Ω01 (i.e., for m = 0 and k = 1, where m is the radial mode number and k is
the wavenumber) and Ω11. Here and below, in the frequency indices, consecutive numbering of the wavenumber is
used: even values of k correspond to even modes [the solution of Eqs. (13)] and odd values of k correspond to odd
modes [the solution of Eqs. (14)]. In a certain range of λ, the real part of the frequency Ω01 can vanish, depending
on the value of the geometrical parameter b (Fig. 2a). For large values of b, this range is absent. As b decreases,
the value of λ increases and tends to infinity for b = 1/π. The vanishing of ΩRe corresponds to the bifurcation of
the branch of the increment ΩIm (curve 1 in Fig. 2b). For large values of the capillary parameter λ, the real part
of the frequency Ω01 vanishes, according to the data in Fig. 2a and according to the expression for ω01 for b � 1/π.
This is due to Rayleigh instability of the liquid column for h = 2πR, i.e., for b = 1/(2π). Thus, for b = 1/π, the
thickness of the layer is equal to the Rayleigh instability half-wavelength.

Figure 3 shows a curve of the damping increment ΩIm versus the geometrical parameter b for m = 0. The
increment takes negative values for b < 1/π, which corresponds to the occurrence of monotonic instability because
ΩRe = 0.

From Fig. 2 it follows that as λ increases, the frequency decreases monotonically, the damping ratio has a
maximum for a finite value of the capillary parameter and tends to zero as λ → 0 and λ → ∞. In the first case
(λ → 0), the following expressions are valid for the even modes:

−8b

∞∑

k=1

Ω2
0 ImΩ0Re

γ2
0k(ω2

0k − Ω2
Re)

+ Ω0 Im cot
( 1

2b

)
+ λ

1
b

= 0,

4Ω2
1ReΩ1 Im

∞∑

k=1

ω2
1k

π2k2(ω2
1k − Ω2

1 Re)2
+

1
3

Ω1 Im − λ = 0,

3Ω2
m ReΩm Im

∞∑

k=1

2b2ω2
mkγm0

γ2
mk(ω2

mk − Ω2
m Re)2

+ Ωm Im coth
(γm0

2b

)
= λ

γm0

b
.
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Fig. 3. Damping ratio versus geometrical parameter for the frequency Ω01 for λ = 0.44 and ρi = 0.75.

Here Ω0Re, Ω1Re, and Ωm Re are determined from the relations
∞∑

k=1

2bΩ2
0Re

γ2
0k(ω2

0k − Ω2
0Re)

− cot
( 1

2b

)
= 0,

∞∑

k=1

Ω4
1Re

π2k2(ω2
1k − Ω2

1Re)
+

1
6

Ω2
1 Re = 2b2,

Ω2
m Re

∞∑

k=1

2b2ω2
mkγm0

γ2
mk(ω2

mk − Ω2
m Re)2

+ coth
(γm0

2b

)
= 0.

In the second case (λ → ∞), the damping ratios are expressed as

Ω(1k) =
ω2

1k

2λπ2k2
, Ω(mn) =

ω2
mk

λγ2
mk

, m 
= 1.

In this case, the natural oscillation frequencies of the droplet coincide with the natural frequencies of the freely
moving cylindrical droplet [5].

As for the even modes, with increasing λ, the odd mode frequency decreases monotonically, the damping
ratio has a maximum for a finite value of the capillary parameter and tends to zero as λ → 0 and λ → ∞. In the
first case, the following expressions are valid:

4b

∞∑

k=0

3Ω2
0 ImΩ0Re

δ2
0k(ω2

0k − Ω2
Re)

+ Ω0 Re tan
( 1

2b

)
= λ

1
b
,

∞∑

k=0

4Ω2
1ReΩ1 Im

π2(2k + 1)2(ω2
1k − Ω2

Re)
+

1
2

Ω1Re = λ,

3Ω2
m ReΩm Im

∞∑

k=0

4bγm0

δ2
mk(ω2

mk − Ω2
r)

+ Ωm Im tanh
(γm0

2b

)
= λ

γm0

b
.

Here Ω0Re, Ω1Re, and Ωm Re are determined from the relations
∞∑

k=0

4bΩ2
0Re

δ2
0k(ω2

0k − Ω2
0Re)

+ tan
( 1

2b

)
= 0,

∞∑

k=0

Ω2
1 Re

(2k + 1)2π2(ω2
1k − Ω2

1Re)
+

1
2

= 0,

∞∑

k=0

4bΩ2
mReγm0

δ2
mk(ω2

mk − Ω2
m Re)

+ tanh
(γm0

2b

)
= 0.
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Fig. 4. Real part (a) and imaginary part (b) of the frequency versus capillary parameter: curves 1
and 3 refer to the frequency Ω20 for b = 1 (1) and b = 2.5 (3) and curve 2 refers to the frequency Ω10

for b = 2.

In the second case (λ → ∞), the damping ratios are expressed as

Ω(1k) =
2ω2

1k

λ(2k + 1)2π2
, Ω(mk) =

ω2
mk

λδ2
mk

, m 
= 1.

The first translation mode describes the displacement of the droplet as a whole. In the case considered (with
the contact-line dynamics taken into account) the displacement is larger in the central part of the column than near
the ends. Elastic forces cause the droplet to take the original shape, resulting in the return motion of its center
of mass. As the capillary parameter increases, the shift between the center and periphery of the droplet surface
decreases. For a certain value of the capillary parameter, the difference in the value of the shift disappears and the
first eigenmode frequency vanishes (Fig. 4a). For large values of λ, the damping ratio takes two values (Fig. 4b).
For the frequencies Ωm0 (m = 2, 3, . . . ) there exists a certain range of the capillary parameter λ in which the real
parts of these frequencies vanish. The length of this range increases with increasing parameter b (Fig. 4), in contrast
to the axisymmetric mode. From Fig. 4 it follows that the natural oscillation frequency of the droplet increases as
the parameter b increases (i.e., as the equilibrium radius increases or as the droplet height decreases).

Conclusions. The oscillations of a cylindrical liquid droplet surrounded by a different liquid and enclosed
between two solid surfaces were studied. The contact-line dynamics was taken into account: the velocity of motion
of the contact line was assumed to be proportional to the deviation of the contact angle from the equilibrium value.
The proportionality coefficient, the so-called capillary parameter (wetting parameter), characterizes the properties
of the liquid and the support material. The equilibrium contact angle is equal to π/2.

It was shown that an increase in the capillary parameter leads to a reduction in the natural oscillation
frequency. The droplet moving freely on the solid surfaces has the lowest natural frequency.

The axisymmetric eigenmode frequency can vanish in a certain range of the capillary parameter λ, depending
on the value of the geometrical parameter b. For b � 1/π and a certain characteristic value of λ, the frequency
vanishes and the increment becomes negative, which corresponds to the occurrence of Rayleigh instability. As the
value of b increases, the length of this range decreases.

As the capillary parameter increases, the frequency of the translation mode decreases, and for a certain value
of λ, it vanishes for any b.

For the fundamental frequencies with the azimuthal numbers m = 2, 3, . . . there exists a certain range of
the capillary parameter λ in which the real parts of these frequencies also vanish. However, in contrast to the
axisymmetric mode, the length of this range increases with increasing parameter b.

Thus, one can choose the droplet radius-to-height ratio such that the characteristic frequency of any mode
is equal to zero, and, ultimately, to determine the capillary parameter λ.
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